Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers.

نویسندگان

  • S Santra
  • P Zhang
  • K Wang
  • R Tapec
  • W Tan
چکیده

A new molecular conjugation method has been developed to label biomolecules with optically stable metalorganic luminophores, such as tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), which are otherwise not possible for direct linking with the biomolecules. Unique biochemical properties of the biomolecule can, thus, be associated with photostable luminophores. This opens a general way to conjugate desired biomolecules using a sensitive signal transduction method. It also promotes the application of excellent luminescent materials, especially those based on photostable metalorganic luminophores, in biochemical analysis and biomolecular interaction studies. The conjugation method is based on uniform luminophore-doped silica (LDS) nanoparticles (63 +/- 4 nm). These nanoparticles have been prepared using a water-in-oil (W/O) microemulsion method. The controlled hydrolysis of tetraethyl orthosilicate (TEOS) in W/O microemulsion leads to the formation of monodisperse LDS nanoparticles. The luminophores are doped inside the nanoparticles, and the particle's silica surfaces can be used to covalently bind with biomolecules. The luminophores are well-protected from the environmental oxygen when they are doped inside the silica network. As an example, we used an antibody for leukemia cell recognition. The antibody was first immobilized onto the luminophore-doped nanoparticle through silica chemistry and then was used for leukemia cell identification by an optical microscopy imaging technique. The leukemia cells were identified easily, clearly, and with high efficiency using these antibody-coated nanoparticles. The advantages of using small, uniform luminophore-doped nanoparticles are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles.

Fluorescent-labeled molecules have been used extensively for a wide range of applications in biological detection and diagnosis. A new form of highly luminescent and photostable nanoparticles was generated by doping the fluorescent dye tris(2'2-bipyridyl)dichlororuthenium(II)hexahydrate (Rubpy) inside silica material. Because thousands of fluorescent dye molecules are encapsulated in the silica...

متن کامل

MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection.

In this work, we have prepared three types of aptamer-conjugated Rubpy-doped silica nanoparticles for Human breast carcinoma MCF-7 cells labeling. Probe A is prepared through covalent conjugation between amine-labeled MUC-1 aptamer and carboxyl-modified Rubpy-doped NPs (NPs-aptamer). Probe B is prepared based on the interaction between biotin-labeled MUC-1 aptamer and avidin-conjugated Rubpy-do...

متن کامل

Separation of Curcumin from Curcuma longa L. and its Conjugation with Silica Nanoparticles for Anti-cancer Activities

Curcumin is the natural bio-active component of turmeric (Curcuma longa L.) with known therapeutic properties; nevertheless, its biological applications are limited due to its poor bioavailability. To overcome this limitation, curcumin was conjugated with silica nanoparticles. Curcumin was separated from turmeric by microwave-assisted extraction and silica nanoparticles were developed from rice...

متن کامل

Photosensitive Fluorescent Dye Contributes to Phototoxicity and Inflammatory Responses of Dye-doped Silica NPs in Cells and Mice

Dye-doped fluorescent silica nanoparticles provide highly intense and photostable fluorescence signals. However, some dopant dye molecules are photosensitive. A widely-used photosensitive fluorescent dopant, RuBpy, was chosen to systematically investigate the phototoxicity of the dye-doped silica nanoparticles (NPs). We investigated cell viability, DNA damage, and Reactive Oxygen Species (ROS) ...

متن کامل

Synthesis and characterization of gold-deposited red, green and blue fluorescent silica nanoparticles for biosensor application.

Fluorescent silica nanoparticles deposited with highly monodisperse gold nanoparticles (1-2 nm) were synthesized via the W/O method and intensive ultrasound irradiation. A large surface area of gold-doped fluorescent silica nanoparticle serves as a platform to immobilize a specific binding protein for biomolecules interaction in bioimaging applications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 73 20  شماره 

صفحات  -

تاریخ انتشار 2001